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Chapter 4
Uncertainty of Discharge-Probability
Function

4-1. Function Development

a. A discharge or stage-probability function is criti-
cal to evaluation of flood damage reduction plans. The
median function is used for the analytical method. The
manner in which the function is defined depends on the
nature of the available data. A direct analytical approach
is used when a sample (such as stream gauge records of
maximum annual discharges) is available and it fits a
known statistical distribution such as log Pearson III.
Other approaches are required if recorded data are not
available or if the recorded data do not fit a known distri-
bution. These approaches include using the analytical
method after defining parameters of an adopted discharge-
probability function generated by various means and the
graphical or “eye fit” approach for fitting the function
through plotting position points. The synthetic statistics
approach is applied when the statistics for an adopted
discharge-probability function are consistent with hydro-
logically and meteorologically similar basins in the region.
The adopted function may be determined using one or
more of the methods presented in Table 4-1. The graphi-
cal approach is commonly used for regulated and stage-
probability functions whether or not they are based on
stream gauge records or computed and stage-probability
functions whether or not they are based on stream gauge
records or computed from simulation analysis.

b. The without-project conditions discharge-
probability functions for the base years are derived
initially for most studies and become the basis of the
analysis for alternative plans and future years. These
functions may be the same as the without-project base
year conditions or altered by flood damage reduction
measures and future development assumptions. The
uncertainty associated with these functions may be signifi-
cantly different, in most instances greater.

c. Flood damage reduction measures that directly
affect the discharge or stage-probability function include
reservoirs, detention storage, and diversions. Other meas-
ures, if implemented on a large scale, may also affect the
functions. Examples are channels (enhanced conveyance),
levees (reduction in natural storage and enhanced convey-
ance), and relocation (enhanced conveyance).

4-2. Direct Analytical Approach

a. General. The direct analytical approach is used
when a sample of stream gauge annual peak discharge
values are available and the data can be fit with a statis-
tical distribution. The median function is used in the risk-
based analysis. The derived function may then be used to
predict specified exceedance probabilities. The approach
used for Corps studies follows the U.S. Water Resources
Council's recommendations for Federal planning involving
water resources presented in publication Bulletin 17B
(Interagency Advisory Committee on Water Data 1982)
and in EM 1110-2-1415 and ER 1110-2-1450.

Table 4-1
Procedures for Estimating Discharge-Probability Function Without Recorded Events
(adapted from USWRC (1981))

Method Summary of Procedure

Transfer Discharge-probability function is derived from discharge sample at nearby stream. Each quantile
(discharge value for specified probability) is extrapolated or interpolated for the location of interest.

Regional estimation of
individual quantiles or of
function parameters

Discharge-probability functions are derived from discharge samples at nearby gauged locations. Then
the function parameters or individual quantiles are related to measurable catchment, channel, or clima-
tic characteristics via regression analysis. The resulting predictive equations are used to estimate
function parameters or quantiles for the location of interest.

Empirical equations Quantile (flow or stage) is computed from precipitation with a simple empirical equation. Typically, the
probability of discharge and precipitation are assumed equal.

Hypothetical frequency events Unique discharge hydrographs due to storms of specified probabilities and temporal and areal distribu-
tions are computed with a rainfall-runoff model. Results are calibrated to observed events or
discharge-probability relations at gauged locations so that probability of peak hydrograph equals storm
probability.

Continuous simulation Continuous record of discharge is computed from continuous record of precipitation with rainfall-runoff
model, and annual discharge peaks are identified. The function is fitted to series of annual hydrograph
peaks, using statistical analysis procedures.
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b. Uncertainty of distribution parameters due to
sampling error.

(1) Parameter uncertainty can be described probabilis-
tically. Uncertainty in the predictions is attributed to lack
of perfect knowledge regarding the distribution and para-
meters of the distribution. For example, the log Pearson
type III distribution has three parameters: a location, a
scale, and a shape parameter. According to the Bulletin
17B guidance, these are estimated with statistical
moments (mean, standard deviation, and coefficient of
skewness) of a sample. The assumption of this so-called
method-of-moments parameter-estimation procedure is
that the sample moments are good estimates of the
moments of the population of all possible annual maxi-
mum discharge values. As time passes, new observations
will be added to the sample, and with these new observa-
tions the estimates of the moments, and hence the
distribution parameters, will change. But by analyzing
statistically the sample moments, it is possible to draw
conclusions regarding the likelihood of the true magnitude
of the population moments. For example, the analysis
might permit one to conclude that the probability is 0.90
that the parent population mean is between 10,000 m3/s
and 20,000 m3/s. As the discharge-probability function
parameters are a mathematical function of the moments,
one can then draw conclusions about the parameters
through mathematical manipulation. For example, one
might conclude that the probability is 0.90 that the loca-
tion parameter of the log Pearson type III model is
between a specified lower limit and a specified upper
limit. Carrying this one step further to include all three
parameters permits development of a description of uncer-
tainty in the frequency function itself. And from this, one
might conclude that the probability is 0.90 that the 0.01-
probability discharge is between 5,000 m3/s and
5,600 m3/s. With such a description, the sampling
described in Chapter 2 can be conducted to describe the
uncertainty in estimates of expected annual damage and
annual exceedance probability.

(2) Appendix 9 of Bulletin 17B presents a procedure
for approximately describing, with a statistical distribu-
tion, the uncertainty with a log-Pearson type III distribu-
tion with parameters estimated according to the Bulletin
17B guidelines. This procedure is summarized in
Table 4-2; an example application is included in
Tables 4-3 and 4-4.

(3) The sampling methods described in Chapter 2
require a complete description of error or uncertainty
about the median frequency function. To develop such a

description, the procedure shown in Table 4-2 can be
repeated for various values ofC, the confidence level.
Table 4-3, for example, is a tabulation of the statistical
model that describes uncertainty of the 0.01-probability
quantile for Chester Creek, PA.

c. Display of uncertainty. The probabilistic
description of discharge-probability function uncertainty
can be displayed with confidence limits on a plotted func-
tion, as shown in Figure 4-1. These limits are curves that
interconnect discharge or stage values computed for each
exceedance probability using the procedure shown in
Table 4-2, with specified values ofC in the equations.
For example, to define a so-called95-percent-confidence
limit, the equations in Table 4-2 are solved for values of
P with C constant and equal to 0.95. The resulting dis-
charge values are plotted and interconnected. Although
such a plot is not required for the computations proposed
herein, it does illustrate the uncertainty in estimates of
quantiles.

4-3. Analytical Approach

The analytical approach for adopted discharge-probability
functions, also referred to as the synthetic approach, is
described in Bulletin 17B (Interagency Advisory Commit-
tee 1982). It is used for ungauged basins when the func-
tion is derived using the transfer, regression, empirical
equations, and modeling simulation approaches presented
in Table 4-1 and when it is not influenced by regulation,
development, or other factors. The discharge-probability
function used is the median function and is assumed to fit
a log Pearson Type II distribution by deriving the mean,
standard deviation, and generalized skew from the adopted
function defined by the estimated 0.50-, 0.10-, and
0.01-exceedance probability events. Assurance that the
adopted function is valid and is properly fitted by the
statistics is required. If not, the graphical approach pre-
sented in the next section should be applied. The value of
the function is expressed as the equivalent record length
which may be equal to or less than the record of stream
gauges used in the deviation of the function. Table 4-5
provides guidance for estimating equivalent record
lengths. The estimated statistics and equivalent record
length are used to calculate the confidence limits for the
uncertainty analysis in a manner previously described
under the analytical approach.

4-4. Graphical Functions

a. Overview. A graphical approach is used when
the sample of stream gauge records is small, incomplete,
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Table 4-2
Procedure for Confidence Limit Definition (from Appendix 9, Bulletin 17B)

The general form of the confidence limits is specified as:

UP,C (X) = X S (K U
P,C)

LP,C (X) = X S (K L
P,C)

in which X and S and are the logarithmic mean and standard deviation of the final estimated log Pearson Type III discharge-probability
function, and KU

P,C and KL
P,C are upper and lower confidence coefficients. [Note: P is the exceedance probability of X, and C is the

probability that UP,C > X and that LP,C < X.]
“The confidence coefficients approximate the non-central t-distribution. The non-central-t variate can be obtained in tables (41,42),
although the process is cumbersome when GW is non-zero. More convenient is the use of the following approximate formulas (32, pp. 2-
15) based on a large sample approximation to the non-central t-distribution (42).

K U
P,C =

KGw , P K 2
Gw , P ab

a

K L
P,C =

KGw , P K 2
Gw , P ab

a

in which:

a = 1
Z 2

C

2 (N 1)

b = K 2
G
w ,

P
Z 2

C

N

and ZC is the standard normal deviate (zero-skew Pearson Type III deviate with cumulative probability, C (exceedance probability 1-C).
The systematic record length N is deemed to control the statistical reliability of the estimated function and is to be used for calculating
confidence limits even when historic information has been used to estimate the discharge-probability function.

Examples are regulated flows, mixed populations such as
generalized rainfall and hurricane events, partial duration
data, development impacts, and stage exceedance proba-
bility. The graphical method does not yield an analytical
representation of the function, so the procedures described
in Bulletin 17B cannot be applied to describe the uncer-
tainty. The graphical approach uses plotting positions to
define the relationship with the actual function fitted by
“eye” through the plotting position points. The uncer-
tainty relationships are derived using an approach referred
to as order statistics (Morgan and Henrion 1990). The
uncertainty probability function distributions are assumed
normal, thus requiring the use of the Wiebull's plotting
positions, representing the expected value definition of the
function, in this instance.

b. Description with order statistics.The order sta-
tistics method is used for describing the uncertainty for
frequency functions derived for the graphical approach.
The method is limited to describing uncertainty in the
estimated function for the range of any observed data, or
if none were used, to a period of record that is equivalent
in information content to the simulation method used to
derive the frequency function. Beyond this period of
record, the method extrapolates the uncertainty description
using asymptotic approximations of error distributions.
The procedure also uses the equivalent record length
concepts described in Section 4-3 and presented in
Table 4-5.
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Table 4-3
Example of Confidence Limit Computation (from Appendix 9, Bulletin 17B)

The 0.01 exceedance probability discharge for Chester Creek at Dutton Mill gauge is 18,990 cfs. The discharge-probability curve there is
based on a 65-year record length (N = 65), with mean of logs of annual peaks (X) equal to 3.507, standard deviation of logs (S) equal to
0.295, and adopted skew (GW) equal to 0.4. Compute the 95-percent confidence limits for the 0.01 exceedance probability event.

Procedure: From a table of standard normal deviates, ZC for the 95-percent confidence limit (C = 0.95) is found to be 1.645. For the
0.01 probability event with GW = 0.4, the Pearson deviate, KGw,P = K0.4,0.01 is found to be 2.6154. Thus a and b are computed as

a = 1 (1.645)2

2 (65 1)
= 0.9789

b = (2.6154)2 (1.645)2

65
= 6.7987

The Pearson deviate of the upper confidence limit for the 0.01-probability event is

K U
0.01,0.95 = 2.6154 (2.164)2 (6.7987) (0.9789)

0.9789
= 3.1112

and the Pearson deviate of the lower confidence limit for the 0.01-probability event is

K L
0.01,0.95 = 2.6154 (2.164)2 (6.7987) (0.9789)

0.9789
= 2.2323

Thus the upper confidence-limit quantile is
U0.01,0.95 (X) = 3.507 0.295 (3.1112) = 4.4248

and the lower quantile is

L0.01,0.95 (X) = 3.507 0.295 (2.2323) = 4.1655

The corresponding quantiles in natural units are 26,600 cfs and 14,650 cfs, respectively.

Table 4-4
Distribution of Estimates of Chester Creek 0.01-Probability
Quantile

Exceedance Probability Discharge, cms

0.9999 320

0.9900 382

0.9500 415

0.9000 437

0.7000 491

0.5000 538

0.3000 592

0.1000 694

0.0500 753

0.0100 895

0.0001 1,390
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Figure 4-1. Confidence limits

Table 4-5
Equivalent Record Length Guidelines

Method of Frequency Function Estimation Equivalent Record Length 1

Analytical distribution fitted with long-period gauged record available at site Systematic record length

Estimated from analytical distribution fitted for long-period gauge on the same
stream, with upstream drainage area within 20% of that of point of interest 90% to 100% of record length of gauged location

Estimated from analytical distribution fitted for long-period gauge within same
watershed 50% to 90% of record length

Estimated with regional discharge-probability function parameters Average length of record used in regional study

Estimated with rainfall-runoff-routing model calibrated to several events recorded at
short-interval event gauge in watershed 20 to 30 years

Estimated with rainfall-runoff-routing model with regional model parameters (no
rainfall-runoff-routing model calibration) 10 to 30 years

Estimated with rainfall-runoff-routing model with handbook or textbook model
parameters 10 to 15 years
1 Based on judgment to account for the quality of any data used in the analysis, for the degree of confidence in models, and for previous
experience with similar studies.
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